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Vectorial Wave Analysis of Uniform-Core
Optical Fibers Using a Novel
Boundary Integral Method
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Abstract —Vectorial wave analyses of uniform-core optical fibers using a
novel boundary integral method that does not use Green’s function, are
presented. The expansion of the electromagnetic field on the boundary, the
selection of the weight function, and the method for giving boundary
conditions are discussed first. By using the formulation obtained, the
propagation characteristics of elliptical-core optical fibers are analyzed.
The effect of the boundary shape on the numerical results is also investi-
gated through analyses of rectangular-core fibers. It is found that the new
boundary integral method can easily be applied to solve vectorial wave
boundary value problems.

I. INTRODUCTION

N A PREVIOUS paper {1], we proposed a new integral

equation method called the boundary-integral method
without using Green’s function. This method has been
found to be an efficient tool for solving Dirichlet- and
Neumann-type boundary value problems of two-dimen-
sional scalar wave equations. In the same report, we also
suggested the possibility of using this method to solve
general electromagnetic boundary value problems, such as
the vectorial wave analysis of optical fibers.

The conventional boundary element method (BEM)
[2]-{5] has been applied to the vectorial wave analyses of
optical fibers [5]. However, in the BEM, the use of the
Green’s function not only is unnecessary but is also diffi-
cult because singularities exist in the function to be inte-
grated [1]. What is more, the selection of the function on
the boundary is difficult for the case of vectorial wave
analyses.

To eliminate the singularities in the integration, the
extended boundary condition method has been used [6],
[7]. However, the formulation of that method is rather
complicated.

In this paper, the new method is applied to the vectorial
wave analysis of uniform-core optical fibers. This integral
equation method has been proposed for eliminating the
above difficulties in the conventional BEM. To be¢ more
specific, the weight functions which satisfy the Helmholtz

Manuscript received December 28, 1987; revised September 9, 1988.

N. Kishi is with the Department of Electronic Engineering, University
of Electro-Communications, 1-5-1 Chofugaoka, Chofu-shi, Tokyo 182,
Japan.

T. Okoshi is with the Research Center for Advanced Science and
Technology (RCAST), University of Tokyo, 4-6-1 Komaba, Meguro-ku,
Tokyo 153, Japan.

IEEE Log Number 8825383.

CLADDING
Ne
Fig. 1. Cross section of an arbitranly shaped optical fiber core.

equation are used in the new method instead of the Green’s
function in the conventional BEM. The electromagnetic
functions on the boundary are expanded in Fourier series
on a curvilinear coordinate. The validity of the formula-
tion is proved by deriving the eigenvalue equations of a
circular-core step-index optical fiber and comparing these
with analytical solutions.

In the numerical analyses, consideration is given mainly
to the propagation characteristics of elliptical-core optical
fibers. The results show good agreement with the analyti-
cal solutions of Yeh [8]. The effect of the boundary shape
on the numerical results is also investigated through analy-
ses of rectangular-core fibers.

II. Basic EQUATIONS

We consider an optical fiber having an arbitrarily shaped
core, whose cross section is shown in Fig. 1. It is assumed
that in each region the material is homogeneous, isotropic,
lossless, and nonmagnetic and that the cladding region
extends to infinity. We denote the core and cladding
regions by the subscripts 1 and C, respectively. Therefore,
the z components of the electromagnetic field, E, and H,,
satisfy the following Helmholtz equation in each region

[9]:

Vil |+ =g =0

P24 Zt

where i =1, C and

k, wavenumber of free space ( = wyeyp,),
n, refractive index of each region,

1

B propagation constant of the propagation mode.
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The transverse field components are derived from the z
components as [9]

B Wity
E =———|V,E, ——a,XV,H 2
1 ,82 _ n?kg (vt zt ;B a, vt zz) ( a’)
JB wegn?
H =—-75— H_+ XVE 1. (2b
t B2 _ nIZkg (Vt zi ,8 a- Vt zi ( )

The boundary conditions on the core—cladding interface
T are written as follows:

Ezl =L,c (3a)
Hzl = HzC (3b)
t-E,=t-E, (3c)
t-H,=t-H, (3d)
where
jB aE‘zt wAU‘O 8Hzt
tE,~ 55| 5~ (42)
B —niki\ a9t B dn
JB dH, o.>eon,2 JE,,
t-H, = + . 4b
o Bz—nfkg( at B dn (4b)

The tangential and normal unit vectors used in these
equations, ¢ and n, are shown in Fig. 1.

I11.

To solve the boundary value problem of (1) and (3), the
following boundary integral equation is used [1]:

gﬁr(zpa“b ks (5)

dn ? dan ) di=0
where ¢ stands for E, or H, and (d¢/dn) denotes its
normal derivative on the boundary; i denotes a weight
function [1] which satisfies (1) as E, and H, do.

In the following, we show (a) expressions for electro-
magnetic variables on the boundary I, (b) selection of the
weight functions ¢, and (c) the matrix equation for the
eigenvalues and eigenfunctions.

BOUNDARY INTEGRAL FORMULATION

A. Electromagnetic Variables on the Boundary

In the previous paper, which dealt with single-potential
problems [1], the field variables on the boundary I' and
their normal derivatives were expressed, as in the conven-
tional BEM [2]-[5], by piecewise-linear functions as shown
in Fig. 2(a). A higher order interpolation function [3] has
also been used. However, in the case of hybrid-potential
problems (problems for obtaining hybrid modes of propa-
gation), the use of such functions on the boundary be-
comes difficult, as seen in the following.

When we apply the boundary conditions given by (3),
we must calculate the tangential derivatives of E, and H,,
which are the first terms on the right-hand sides of egs. (4).
These tangential derivatives (dE, /d¢) and (dH,/dt) have
an order lower by one than that of E, and H, (or the
normal derivatives (JE,/dn) and (9H, /dn)), as shown in
Fig. 2(b); i.e., when the latter is piecewise linear, the
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Fig. 2. Piecewise-linear function on the toundary in the conventional
BEM [3]-[5]. (a) ¢ or its normal derivalive (d¢/dn). (b) Tangential
derivative (d¢/d1).
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Fig. 3. Curvilinear coordinate ¢ along the boundary for expression of
field variables and cylindrical coordinate for expression of weight
functions.

former becomes discontinuous. Hence the right-hand sides
of egs. (4) will contain variables having different orders,
which make the application of the boundary conditions
difficult. In addition, the approximation of the boundary
shape by straight line segments (called elements in the
BEM analysis) reduces the numerical accuracy [1].

To overcome the above. difficulties, we use here the
curvilinear coordinate ¢ along the boundary I', as shown in
Fig. 3. When the boundary shape has symmetries with
respect to the x and y axes, the field variables on the
boundary also have such symmetries and are expanded in
Fourier series as

(62)

jort
E, = gajcos(!z—z-i-p)

(6b)

. [ mt
H, = ijsm(-ﬂ:+p)

dE! jmt

5 =ZC;COS(ZE+F)) (6¢)
J

dH! et
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where the superscript i (=1,C) denotes the core and
cladding regions, respectively, and L denotes the length of
the boundary in the first quadrant. By using egs. (6), the
boundary conditions are easily applied in the spatial fre-
quency region.

B. Weight Functions

We choose circular harmonics as the weight function
in the cylindrical coordinate; in other words, we use prod-
ucts of a Bessel function and a trigonometric function, as
in the previous paper [1]. We should note that ¢ will have
different forms depending upon the function ¢.

The weight functions in the core region are

Y =J,(x.r)cos(nd+p)  (forelectric field)  (7a)

Y=J (x,r)sin(nd+p)  (for magnetic field) (7b)

xi= (n3k3—B*)"” (7¢)

where J,(x) denotes the nth-order Bessel function of the
first kind.
The weight functions in the cladding region are

v =K,(xcr)cos(nf+p)  (forelectric field)  (8a)
v=K,(xcr)sin(nb+p) (for magnetic field) (8b)

1/2
Xc™ (Bz_"zck(%) (8¢)
where K,(x) denotes the nth-order modified Bessel func-
tion of the second kind.

C. Matrix Equation for Eigenvalue and Eigenfunction

We can now solve (5) using the above field variables and
corresponding weight functions. Taking advantage of the
symmetry of boundary conditions and field variables, we
can restrict the contour integral of (5) to the first quadrant,
selecting the orders n, j and rotation angle p as shown in
Table I [1]. The number of weight functions is equal to
that of the Fourier expansion coefficients of the corre-
sponding mode. Thus, (5) can be rewritten as

[4']a=[C']¢ (92)
[B']p=[D']d" (i=1,C) (9b)
c=[c]'[4']a (10a)
d'=[D']7'[B]b (i=1,C) (10b)

where [A4'],[B'],[C'),[D'] (i=1,C) are square matrices
having the order same as the number of Fourier expansion
coefficients of the corresponding field; a and b are numer-
ical vectors consisting of the Fourier expansion coefficients
of E, and H,, respectively; and ¢’, d’ (i =1, C) are numer-
ical vectors consisting of the Fourier expansion coefficients
of (dE,/dn) and (dH,/dn), respectively. Equations (9)
and (10) relate the fields on the boundary to their normal
derivatives.

On the other hand, the tangential derivatives in (4a) and -

(4b) are easily obtained by differentiating (6a) and (6b).

TABLE 1
SELECTION OF THE ORDER #, j AND ROTATION ANGLE p OF THE FIELD
OR WEIGHT FUNCTION {y ACCORDING TO THE SYMMETRY OF THE
BoUNDARY CONDITIONS AND FIELD VARIABLES

symmetr.y of Ez about x-~ order and rotation angle
or y-axis
x-axris y-axis n,] o
symmetric symmetric even 0
symmetric antisymmetric odd 0
antisymmetric symmetric odd /2
antisymmetric antisymmetric even 7:/2

Hence, all the terms on the right-hand sides of egs. (4) can
be expressed in terms of the Fourier coefficient vectors a
and b. Thus the boundary conditions (eq. (3)) can be
applied. Note that the boundary conditions given by (3a)
and (3b) are satisfied automatically, because E, and H_ on
the boundary, i.e., @ and b, are unknown variables.

Therefore, the matrix type eigenequation is given finally
in the form

[a][ 3] =0 (1)

where [M] denotes the square matrix having an order

equal to the sum of the numbers of terms in the Fourier
expansions for electric and magnetic fields.

The eigenvalue equation is obtained from (11) as

det[M]=0. (12)

We can further calculate £, and H, by using (11), and
hence (JE, /dn) and (dH, /dn) by means of (10).

IV. EIGENVALUE EQUATION FOR CIRCULAR
STEP-INDEX OPTICAL FIBER

To prove the validity of the formulation, we derive in
this section the eigenvalue equation for a circular step-
index optical fiber having a core radius a from the formu-
lation given in the previous section.

In the previous section, field variables and weight func-
tions have been selected according to the symmetry of
eigenmodes. In this section, for simplicity we do not make
such selections and perform the integration in (5) over all
four quadrants. Because of the orthogonality of trigono-
metric functions, egs. (10) become

L [ x5 (xaa) xuJY (xua) a
[ 1]—d1ag_ AT }[b] (13a)

[CC} [xekg(xea) x.ki(x.a)
c =dlag R L
d L ko(x.a) ki(x.a)

a1 s

where diag| - - - ] denotes a diagonal matrix.
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Using egs. (13) and the relations

JE, Jt
PP =—Z ajsm( +p) (14a)
8H / 14b
+
a2 (a p) (14b)
we can rewrite eqgs. (11) as
_ﬁ {—ia wﬂo X1J (Xla) }sm(ﬁ-l-p)
X3 J a’ :B J(X1a) a
B J "-’Ho /(x.a)
=-— -—q;,— — - ————=p.
xz%;{ o T ey |
(15a)
_ ﬁ i + ‘*"0”12 ) Xl']/’(X1a)a cos(£+ )
xi Tla? B J(xa) a ’
weon? x.k;(x. a) (jt )
cos| —+
xi?{a’ Bk (xa) © a "’
(15b)
to obtain finally
_MO 0 -
0 M
[M] 0
[M,]
[#)]
0
i [My] |
Cag ]
by
a
by
a;
b,
: |=0 (16a)
J
b]
Ay
_bNJ
where
27/ 2
nlJO (xla) nck(,)(Xca) }
M, = we 16b
0 0{ xilo(x:8)  Xxcko(x.a) (160)
I3 (x1a) ko(x.a) }
M} = wp (16¢)
0 0{ xiho(x1a)  xko(x.a)

and [M ] denotes the second-order square matrix whose
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Fig. 4. Convergence characteristics of cale ulated propagation constants
for elliptical core. (a) P value of HE], mode. (b) AP, ie., the

difference between the P values for the HE], and HE3, modes.

determinant satisfies

det[M] =k2 nlz‘]j/(XIa) ngkjl‘:Xca)
/ 0 Xl‘]j(XIa) kj(Xca)

{ J(xwa)  kj(x.a) }

X]‘]J(Xla) Xckj(Xca)

(2 )z(xll +x%)2- a6d)

Hence the eigenvalue equation (12) can be expressed as

(17)

N
Mo M- TT det[M,] =0

1=1
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Fig. 5. Comparison of convergence of the P value for the HE}, mode
with the point-matching method [10].

leading to three types of relations:
My=0 M{=0 and det|M,]=0.

It is known in optical fiber theory [9] that these solutions
correspond to TM modes, TE modes, and hybrid modes,
respectively.

Thus, the eigenvalue equations of a circular step-index
optical fiber can be derived from the general formulation
in the previous section, and the latter has been proved.

V. ANALYSIS OF ELLIPTICAL-CORE FIBERS

In this section, numerical analyses of step-index optical
fibers having an elliptical core are presented.

We define three parameters: ellipticity e, normalized
wavenumber V, and normalized propagation constant P,
as

e=1-b/a (18a)

V=kyayn} - nZ (18b)
ko)?— n?

P=('B/ 0) 2nc (18¢)

ni—ng
where a and b are the major and minor axes of the
elliptical core, respectively.

The designation of modes is given according to those in
circular step-index fibers. The subscripts x and y denote
the polarization axes in the HE;; modes.

Fig. 4(a) shows how the calculated P value converges as
N, the number of terms of the Fourier expansion of the
field variables, increases. Here N denotes the number of
terms for E or H; the total number is therefore 2N. Fig.
4(b) shows the convergence of AP, i.e. the difference
between the P values for the HE{, and HE}; modes. ‘

Fig. 5 shows a comparison of the convergence for the
HE¢?, mode with that in the point-matching method (PMM)
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Fig. 6. Comparison of the propagation characteristics for large index
differences with Yeh’s analytical solutions [8] for elliptical core.
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Fig. 7. Normalized cutoff frequencies V, of the TE;, and HE,, modes
as a function of the ellipticity ¢. The solid curves show the results of
this method; the dots show the results of conventional BEM [5].

0

Fig. 8. Cross section of the rectangular core, The corner is rounded to
investigate the effect of its radius of curvature ¢.

using a circular-harmonics expansion [10]. It is found that
convergence in this method is much faster than in the
point-matching method.

So far, the index difference between the core and
cladding is assumed to be 1 percent. However, it is desir-
able to show the results for higher index differences to
demonstrate the validity of the proposed vectorial wave
analysis. Fig. 6 compares the computed propagation char-
acteristics for large index differences with Yeh’s analytical
solutions [8]. The two solutions show good agreement.
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Fig. 11. Calculated electric field and its normal derivatives to the core region for the HE,;, mode for rectangular cores with
the number of Fourier expansion of field variables N increased. (a) ¢/a =0.5.(b) ¢/a=03.(c) ¢/a=0.1.(d) c=0:
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Some calculated results for higher order modes are shown
in Fig. 7. In this figure, the normalized cutoff. frequencies
V. of the first and second higher order modes are shown as
functions of the ellipticity e. The solid curves (results of
this method) and the dots (results of the conventional
BEM [5]) show good agreement.

VI. ANALYSIS OF RECTANGULAR
DIELECTRIC WAVEGUIDES

In the present analyses, the field variables on the bound-
ary are Fourier-expanded on the curvilinear coordinate as
described in Section III. Such a formulation does not
present a problem if the boundary is perfectly smooth.
However, when corners exist on the boundary, the normal
and tangential derivatives of the electromagnetic fields
become discontinuous, whereas the Fourier series is con-
tinuous and could be differentiated. This discrepancy re-
sults in a reduction of the numerical accuracy.

In this section, we present numerical analyses of rectan-
gular dielectric waveguides to investigate the effect of the
boundary shape on the numerical accuracy. Fig. 8 shows
the cross section of a rectangular core. The corner is
rounded to investigate the effect of its radius of curvature
¢; for a truly rectangular shape ¢= 0.

Fig. 9 shows the convergence of P for the HE;; mode.
As ¢/a is decreased, i.e., as the rectangular corner be-
comes sharper, the convergence becomes. slower, but not
drastically.

The solid curves in Fig. 10 show the propagation charac-
teristics of the dominant (HE,;) and the first higher order
(TEg;) modes for the truly rectangular shape (¢ =10). The
results of the point-matching analysis [11] are shown by
dots for comparison. The results of the two methods are in
good agreement.

We can also calculate the electromagnetic fields using
(10) and (11) after solving (12). Figs. 11 and 12 show the
calculated electric field and its normal derivatives on the
boundary for the HE,, and TE, modes, respectively. In
these figures, “A” and “B” on the abscissa indicate the
ends of the curved portion. As the number of -Fourier
expansion terms N increases, the electric field on the
boundary converges, whereas the normal derivative has
ripples whose amplitudes become larger as the radius of
curvature ¢ decreases.

VIL

1) The proposed method is simpler than the conven-
tional BEM because of the absence of singularities in the
integration. It is also simpler than the extended boundary
condition method because (5) is applied directly to the z
components of the electromagnetic fields, and only the
boundary values of these field variables are used as un-
known variables. '

2) In this formulation, electromagnetic fields on the
boundary are expanded in Fourier series. In comparison
with the conventional BEM analyses, the application of
the boundary condition becomes much easier. It can be

DiscussioN
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c/a=01
TEm V=3

(b)
Fig. 12. Same as in Fig. 11 for TE,; modes. (a) ¢/a = 0.1 (b) ¢=0.

made only by equating term by term the Fourier spatial
frequency components of the tangential field on both sides
of the boundary.

3) In the derivation of eigenvalue equations of the circu-
lar step-index optical fiber, a rigorous eigenvalue equation
has been obtained without any spurious solutions. In ac-
tual numerical analyses, we have never encountered any
spurious solutions.

4) Figs. 4 and 9 indicate that the convergence is very
fast regardless of the boundary shape. The calculation
results Have been proved to be correct through comparison
with those by other numerical analyses, as shown in Figs.
5,6, 7, and 10.

VIIL

Vectorial wave analyses of optical fibers having arbitrar-
ily shaped uniform cores have been carried out by the
boundary integral method without using Green’s function.
Both the simplicity and the usefulness of the new method
have been demonstrated. The accuracy of the calculated
propagation constants is high even when corners exist on

CONCLUSION’

‘the boundary.
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