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Vectorial Wave Analysis of Uniform-Core
Optical Fibers Using a Novel

Boundary Integral Method

NAOTO KLSHI, MEMBER, IEEE, AND TAKANORI OKOSHI, FELLOW, IEEE

~b.stract—Vectorial wave anatyses of uniform-core optical fibers using a

novel boundary integral method that does not use Green’s function, are

presented. The expansion of the electromagnetic field on the boundary, the

selection of the weight function, and the method for giving boundary

conditions are discussed first. By using the formulation obtained, the

propagation characteristics of elliptical-core optical fibers are analyzed.

The effect of the boundary shape on the numerical results is also investi-

gated through analyses of rectangular-core fibers. It is found that the new

boundary integral method can easily be applied to solve vectorial wave

boundary value problems.

I. INTRODUCTION

I N A PREVIOUS paper [1], we proposed a new integral

equation method called the boundary-integral method

without using Green’s function. This method has been

found to be an efficient tool for solving Dirichlet- and

Neumann-type boundary value problems of two-dimen-

sional scalar wave equations. In the same report, we also

suggested the possibility of using this method to solve

general electromagnetic boundary value problems, such as

the vectorial wave analysis of optical fibers.

The conventional boundary element method (BEM)

[2]-[5], has been applied to the vectorial wave analyses of

optical fibers [5]. However, in the BEM, the use of the

Green’s function not only is unnecessary but is also diffi-

cult because singularities exist in the function to be inte-

grated [1]. What is more, the selection of the function on

the boundary is difficult for the case of vectorial wave

analyses,

To eliminate the singularities in the integration, the

extended boundary condition method has been used [6],

[7]. However, the forniulation of that method is rather

complicated.

In this paper, the new method is applied to the vectorial

wave analysis of uniform-core optical fibers. This integral
equation method has been proposed for eliminating the

above difficulties in the conventional BEM. To be more

specific, the weight functions which satisfy the Helmholtz
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Fig. 1. Cross section of an arbitrary shaped optical fiber core

equation are used in the new method instead of the Green’s

function in the conventional BEM. The electromagnetic

functions on the boundary are expanded in Fourier series

on a curvilinear coordinate. The validity of the formula-

tion is proved by deriving the eigenvalue equations of a

circular-core step-index optical fiber and comparing these

with analytical solutions.

In the numerical analyses, consideration is given mainly

to the propagation characteristics of elliptical-core optical

fibers. The results show good agreement with the analyti-

cal solutions of Yeh [8]. The effect of the boundary shape

on the numerical results is also investigated through analy-

ses of rectangular-core fibers.

II. BASIC EQUATIONS

We consider an optical fiber having an arbitrarily shaped

core, whose cross section is shown in Fig. 1. It is assumed

that in each region the material is homogeneous, isotropic,

lossless, and nonmagnetic and that the cladding region

extends to infinity. We denote the core and cladding

regions by the subscripts 1 and C, respectively. Therefore,
the z components of the electromagnetic field, ~: and Hz,

satisfy the following Helmholtz equation in each region

[9]:

where i =1, C and

kO wavenumber of free space ( = @~cOpO),

n, refractive index of each region,

~ propagation constant of the propagation mode.
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The transverse field components are derived from the z

components as [9]

The boundary conditions on the core–cladding interface

r are written as follows:

EZ1= Ezc (3a)

HZ1 = H,c (3b)

t. Eil=t. Elc (3C)

t. Hll=t. Htc (3d)

where

The tangential and normal unit vectors used in these

equations, t and n, are shown in Fig. 1.

III. BOUNDARY INTEGRAL FORMULATION

To solve the boundary value problem of (1) and (3), the

following boundary integral equation is used [1]:

(5)

where @ stands for E= or HZ and ( d~/d n ) denotes its

normal derivative on the boundary; + denotes a weight

function [1] which satisfies (1) as EZ and HZ do.

In the following, we show (a) expressions for electro-

magnetic variables on the boundary I’, (b) selection of the

weight functions ~, and (c) the matrix equation for the

eigenvalues and eigenfunctions.

A. Electromagnetic Variables on the Boundaiy

In the previous paper, which dealt with single-potential

problems [1], the field variables on the boundary r and

their normal derivatives were expressed, as in the conven-

tional BEM [2]–[5], by piecewise-linear functions as shown

in Fig. 2(a). A higher order interpolation function [3] has

also been used. However, in the case of hybrid-potential

problems (problems for obtaining hybrid modes of propa-

gation), the use of such functions on the boundary be-

comes difficult, as seen in the following.
When we apply the boundary conditions given by (3),

we must calculate the tangential derivatives of E, and H,,

which are the first terms on the right-hand sides of eqs. (4).

These tangential derivatives ( dEZ/dt) and ( dHz/r?t) have

an order lower by one than that of E, and HZ (or the

normal derivatives ( 8EZ /8 n ) and ( i3HZ/8 n )), as shown in

Fig. 2(b); i.e., when the latter is piecewise linear, the

(a)

IIl— ,—
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(b)

Fig. 2, Piecewise-linear function on the boundary in the conventional

BEM [3]–[5]. (a) $ or its normal derivative ( d@/d n). (b) Tangential
derivative ( i3@/J t).

Y

Fig. 3. Curvihnear coordinate t along the boundary for expression of
field variables and cylindrical coordinate for expression of weight
functions.

former becomes discontinuous. Hence the right-hand sides

of eqs. (4) will contain variables having different orders,

which make the application of the boundary conditions

difficult. In addition, the approximation of the boundary

shape by straight line segments (called elements in the

BEM analysis) reduces the numerical accuracy [1].

To overcome the above, difficulties, we use here the

curvilinear coordinate t along the boundary 17,as shown in

Fig. 3. When the boundary shape has symmetries with

respect to the x and y axes, the field variables on the

boundary also have such symmetries and are expanded in

Fourier series as

(6a)

(6b)

(6c)

(6d)
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where the superscript i ( =1, C) denotes the core and TABLE I

cladding regions, respectively, and L denotes the length of
SELECTION OF THE ORDER n, j AND ROTATION ANGLE p OF THE FIELD

the boundary in the first quadrant. By using eqs. (6), the
OR WEIGHT FUNCTION I) ACCORDING TO THE SYMMSTRY OF THE

BOUNDARY CONDITIONS AND FIELD VARIABLES

boundary conditions are easily applied in the spatial fre-

quency region. symmetry of Ez about x- order and rotation angle
or y-axis

B. Weight Functions

We choose circular harmonics as the weight function $

in the cylindrical coordinate; in other words, we use prod-

ucts of a Bessel function and a trigonometric function, as

in the previous paper [1]. We should note that $ will have

different forms depending upon the function @

The weight functions in the core region are

*= Jn(xlr)cos(nfl+p) (for electric field) (7a)

+ = Jfl(xlr) sin(nd + p) (for magnetic field) (7b)

where .J.( x ) denotes the n th-order Bessel function of the

x-axis v-axis ~lj P

symmetric symmetric even o

symmetric antiswnnetric odd o
antis ymmet7ic symmetric odd x/2

antis ymmeti-ic anti swrunetric even Ir/2

Hence, all the terms on the right-hand sides of eqs. (4) can

be expressed in terms of the Fourier coefficient vectors a

and b. Thus the boundary conditions (eq. (3)) can be

applied. Note that the boundary conditions given by (3a)

and (3b) are satisfied automatically, because E, and H, on

the boundarv. i.e.. a and b. are unknown variables.
first kind.

The weight functions in the cladding region are

+=&(x& )cos(ne+p) (for electric field)

*= K.(xcr)sin(n8+p) (for magnetic field)

Therefore: the matrix type eigenequation is given finally

in the form

(8a)

(8b) [M][;]=o (11)

(8c)
where [M] denotes the square matrix having an order

where K.(x) denotes the n th-order modified Bessel func- eaual to the sum of the numbers of terms in the Fourier
tion of the second kind.

C. Matrix Equation for Eigenvalue and Eigenfunction

We can now solve (5) using the above field variables and

corresponding weight functions. Taking advantage of the

symmetry of boundary conditions and field variables, we

can restrict the contour integral of (5) to the first quadrant,

selecting the orders n, j and rotation angle p as shown in

Table I [1]. The number of weight functions is equal to

that of the Fourier expansion coefficients of the corre-

sponding mode. Thus, (5) can be rewritten as

[A’]a=[CL]c’ (9a)

[B’] b=[D’]d’ (i=l, C) (9b)

or

c’= [Cz]-l[A’]a (lOa)

d’= [D’] -l[B’]fJ (i=l, C) (lOb)

where [AZ], [B’], [C’], [D1] (i =1, C) are square matrices

having the order same as the number of Fourier expansion

coefficients of the corresponding field; a and b are numer-

ical vectors consisting of the Fourier expansion coefficients

of E, and Hz, respectively; and c’, d’ (i =1, C) are numer-

ical vectors consisting of the Fourier expansion coefficients
of ( ijE= /ij n ) and ( dHz /d n ), respectively. Equations (9)

and (10) relate the fields on the boundary to their normal

derivatives.

On the other hand, the tangential derivatives in (4a) and

(4b) are easily obtained by differentiating (6a) and (6b).

.
expansions for electric and magnetic fields.

The eigenvalue equation is obtained from (11) as

det[M]=O. (12)

We can further calculate E= and HZ by using (11), and

hence ( dE2/8n) and (dH=/i3n) by means of (10).

IV. EIGENVALUE EQUATION FOR CIRCULAR

STEP-INDEX OPTICAL FIBER

To prove the validity of the formulation, we derive in

this section the eigenvalue equation for a circular step-

index optical fiber having a core radius a from the formu-

lation given in the previous section.

In the previous section, field variables and weight func-

tions have been selected according to the symmetry of

eigenmodes. In this section, for simplicity we do not make

such selections and perform the integration in (5) over all

four quadrants. Because of the orthogonality of trigono-

metric functions, eqs. (10) become

[1 [C1
= diag

x14’(xla ) xl~{(xla)

JO(X1a) ‘ J1(X1a) ‘“”” ][ 1
~ (13a)

dl

[1 [cc
= diag

xcW(xca) xc~i(x.a)

~O(xca) ‘ k(x,a) ‘””” ][ 1: (13b)
dc

where diag[ . ..] denotes a diagonal matrix.
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Using eqs. (13) and the relations

~Ez

(
—=-~~ajsin ~

at
1

14a)

aHz
~=; ;b, cos(; +p) (14b)

+p
)

we can rewrite eqs. (11) as

B.j–z{ ( ‘~ sin Z+pwo MJ,’ xla— —
X? j )();U’– /3 “ ~(xla) ‘ a

B.i–z{ WO. xck;(xca). —
X2 j

iiaj–/3 k,(xca)
bj)sin(~+p)

(15a)

{“

ucon~ xlJ,’(xla)
-:: :b,+~.

}()

jt
—+p

~(xla) ‘J Cos a

{ }(’)=-$; ~bJ+~. ‘Ck;(xca)aj cos ~+p

k,(xca)

(15b)

to obtain finally

&f. o

0 M;

[~,1 o
[~,1

[“jl
o

[~ivl
a.

b.

al

bl

a2

b2
. . =0

aJ

bJ

a~

b~

(16a)

where

{

rz~J&’(xla) + rr~k~(x,a)
MO=6X0

)
(16b)

xlJO(xla) x,ko(x.a)

{

J~(xla) ki$(x. a)
iw~ = &Jpo

xlJO(xla) + x.ko(x.u) )
(16c)

and [M, ] denotes the second-order square matrix whose
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Fig. 4. Convergence characteristics of calculated propagation constants
for elliptical core. (a) P value of H13/1 mode. (b) AP, i.e., the

difference between the P values for the lHEfl and HEfl modes.

determinant satisfies

det[M,] =k~

{

n?~’(xla)

xl+(xla)

{

~’(xla) k;(x.a). ——

xl~(xla) xCkJ(xCa)
)

-/+)’(: )

12
2+7 . (16d)

xc

Hence the eigenvalue equation (12)1 can be expressed as

Mo.M~. fi det[MJ] =0 (17)
,=1
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Fig. 5. Comparison of convergence of the P value for the HE/’, mode

with the poin~matching method [“LO]. “-

leading to three types of relations:

Mo=o M(=O and det[kf,] =0.

It is known in optical fiber theory [9] that these solutions

correspond to TM modes, TE modes, and hybrid modes,

respectively.

Thus, the eigenvalue equations of a circular step-index

optical fiber can be derived from the general formulation

in the previous section, and the latter has been proved.

V. ANALYSIS OF ELLIPTICAL-CORE FIBERS

In this section, numerical analyses of step-index optical

fibers having an elliptical core are presented.

We define three parameters: ellipticity c, normalized

wavenumber V, and normalized propaga~tion constant P,

as

c=l– b/a (18a)

V= kOa~~ (18b)

(18c)

where a and b are the major and minor axes of the
elliptical core, respectively.

The designation of modes is given according to those in

circular step-index fibers. The subscripts x and y denote

the polarization axes in the HEII modes.

Fig. 4(a) shows how the calculated P value converges as

N, the number of terms of the Fourier expansion of the

field variables, increases. Here N denotes the number of

terms for E or H; the total number is therefore 2N. Fig.

4(b) shows the convergence of AP, i.e., the difference

between the P values for the HE{l and HE:l modes.

Fig. 5 shows a comparison of the convergence for the

HE/l mode with that in the point-patching method (PMM)

1.0

Z=tanhO.7
?
x“

● Yeh

0.5 - — THIS METHOD .

0.41 ! 1

0 1.0 1.8

koa/~

Fig. 6. Comparison of the propagation characteristics for large index
differences with Yeh’s analytical solutions [8] for elliptical core.
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Fig. 7. Normalized cutoff frequencies ~, of the TEOI and HE21 modes

as a function of the ellipticity c The solid curves show the results of
this method; the dots show the results of conventional BEM [5].
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Fig. 8. Cross section of the rectangular core, The corner is rounded to
investigate the effect of its radius of curvature c.

using a circular-harmonics expansion [10]. It is found that

convergence in this method is much faster than in the

point-matching method.
So far, the index difference between the core and

cladding is assumed to be 1 percent. However, it is desir-

able to show the results for higher index differences to

demonstrate the validity of the proposed vectorial wave

analysis. Fig. 6 compares the computed propagation char-

acteristics for large index differences with Yeh’s analytical

solutions [8]. The two solutions show good agreement.



KISHI AND OKOSHI : VECTORIAL WAVE ANALYSIS 531

0.485 ,

nlmc=l.ol
V=2

C=o
—.—,=:=!=!-, -,

0.L80 “ -:+=--’~.=y –

/

c/a =0.1

./
,_, ~._. —.—._.—_

c/a=O.3

:e
24681012141618

N

Fig. 9. Convergence of P value for the HEII mode for rectangular

c

c

cores.

——- fQ= 5 c/a=O.5

–-–-– N=IO HEII
—N=15 v= 2

~-

A B L

t
(a)

_––N=~ c/a =0.1
–.–.– N=,() HEII
—N=15 V=2

\

.’:

AB L

t

(c)

1

C=o
h,/nc=Lol

0.8 -
● PMM

— THIS METHOD
0.6 -

a-

0.4 -

0,2 -

0 1 2 3 L
v

Fig. 10. Propagation characteristics of thcdominant(HEll) mode and
the first higher order (TEOI) mode, for the truly rectangular shape

(.* O). The numerical analysis of the point-matching method (PMM)
[11] is shown in dots.

-–– N=5 c/a=o.3
—.–.– N,1o HEII

—N=15

~:

V=2 ~

Ez :,,

..
/

,!
\

o 33

. :/

o A B ‘L
t

c

(b)

t
(d)

Fig. 11. Calculated electric field tiditsnormd derivatives tothecore re~onfortieHEll mode forrectangularc oreswith
thenumber of Fourier expasion of field vtiables N increased.(a) c/a= 0.5. (b) c/a= 0.3. (c) c/a= O.L (d) c=O.



532 IEEE TUNsAcTIoNs oNMIcRowAvE THEoRYAND Techniques, voL.37, No. 3, MARcH 1989

Some calculated results for higher order modes are shown

in Fig. 7. In this figure, the normalized cutoff frequencies

~, of the first and second higher order modes are shown as

functions of the ellipticity ~. The solid curves (results of

this method) and the dots (results of the conventional

BEM [5]) show good agreement.

VI. ANALYSIS OF RECTANGULAR

DIELECTRIC WAVEGUIDES

In the present analyses, the field variables on the bound-

ary are Fourier-expanded on the curvilinear coordinate as

described in Section III. Such a formulation does not

present a problem if the boundary is perfectly smooth.

However, when corners exist on the boundary, the normal

and tangential derivatives of the electromagnetic fields

become discontinuous, whereas the Fourier series is con-

tinuous and could be differentiated. This discrepancy re-

sults in a reduction of the numerical accuracy.

In this section, we present numerical analyses of rectan-

gular dielectric waveguides to investigate the effect of the

boundary shape on the numerical accuracy. Fig. 8 shows

the cross section of a rectangular core. The corner is

rounded to investigate the effect of its radius of curvature

c; for a truly rectangular shape c = O.

Fig. 9 shows the convergence of P for the HEII mode.

As c/a is decreased, i.e., as the rectangular corner be-

comes sharper, the convergence becomes slower, but not

drastically.

The solid curves in Fig. 10 show the propagation charac-

teristics of the dominant (HEII) and the first higher order

(TEOI) modes for the truly rectangular shape (c= O). The

results of the point-matching analysis [11] are shown by

dots for comparison. The results of the two methods are in

good agreement.

We can also calculate the electromagnetic fields using

(10) and (11) after solving (12). Figs. 11 and 12 show the

calculated electric field and its normal derivatives on the

boundary for the HEII and TEOI modes, respectively. In

these figures, “A” and “ B“ on the abscissa indicate the

ends of the curved portion. As the number of Fourier

expansion terms N increases, the electric field on the

boundary converges, whereas the normal derivative has

ripples whose amplitudes become larger as the radius of

curvature c decreases.

VII. DISCUSSION

1) The proposed method is simpler than the conven-

tional BEM because of the absence of singularities in the

integration. It is also simpler than the extended boundary

condition method because (5) is applied directly to the z

components of the electromagnetic fields, and only the

boundary values of these field variables are used as un-

known variables.

2) In this formulation, electromagnetic fields on the

boundary are expanded in Fourier series. In comparison

with the conventional BEM analyses, the application of

the boundary condition becomes much easier. It can be

~
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Fig. 12. Same as in Fig. 11 for TEOI modes. (a) c\a = 0.1 (b) c = O.

made only by equating term by term the Fourier spatial

frequency components of the tangential field on both sides

of the boundary.

3) In the derivation of eigenvalue equations of the circu-

lar step-index optical fiber, a rigorous eigenvalue equation

has been obtained without any spurious solutions. In ac-

tual numerical analyses, we have never encountered any

spurious solutions.

4) Figs. 4 and 9 indicate that the convergence is very

fast regardless of the boundary shape. The calculation

results have been proved to be correct through comparison

with those by other numerical analyses, as shown in Figs.

5, 6, 7, and 10.

VIII. CONCLUSION

Vectorial wave analyses of optical fibers having arbitrar-

ily shaped uniform cores have been carried out by the

boundary integral method without using Green’s function.

Both the simplicity and the usefulness of the new method

have been demonstrated. The accuracy of the calculated

propagation constants is high even when corners exist on

the boun~ary.
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